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The Dot Product and Angles

Projections

Planes

Cross Product

Shortest Distances



NOTE: Much of this chapter is what you would learn in Multivariable Calculus.
You might find it interesting/useful to read.

But I will only cover the material important to this course.



The Dot Product and Angles



The Dot Product and Angles



The Dot Product and Angles

Definition
X1 X2

Let i= | y1 | and ¥= | y2 | be vectors in R®. The dot product of @
Z1 Z2

and V is

R
-V = X1X2 + y1y2 + 2122,

=1}

ie., U-Vis a scalar.



The Dot Product and Angles

Definition
X1 X2

Let i= | y1 | and ¥= | y2 | be vectors in R®. The dot product of @
Z1 Z2

and V is

R
-V = X1X2 + y1y2 + 2122,

=1}

ie., U-Vis a scalar.

Remark
Another way to think about the dot product is as the 1 x 1 matrix

X2

V:[xl vi o 71 ] y2 :[X1X2+y1yz+zlz2 }
Z2

_T
u



Theorem ( Properties of the Dot Product )

Let i, ¥, W be vectors in R* (or R?) and let k € R.
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b
1. U -V is a real number.



Theorem ( Properties of the Dot Product )

Let i, ¥, W be vectors in R* (or R?) and let k € R.
1. @V is a real number.
2. U-vV=vV-1. (commutative property)



Theorem ( Properties of the Dot Product )

Le # be vectors in R* (or R?) and let k € R.
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Theorem ( Properties of the Dot Product )

1

=
@

=3
=1

e vectors in R® (or R?) and let k € R.

)

)
1. @V is a real number.
2. 0-v=v-u. (commutative property)
3.4-0=0.
4. -9 = |[d]]>.



Theorem ( Properties of the Dot Product )

Let i, ¥, W be vectors in R* (or R?) and let k € R.
1. @V is a real number.
2. U-vV=vV-1. (commutative property)
3.4-0=0.
4 = .
5. (ki) - v=k(u-v)=1- (kv). (associative property)



Theorem ( Properties of the Dot Product )

=
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,¥,W be vectors in R® (or R?) and let k € R.

1. -V is a real number.

2. 0-v=v-u. (commutative property)

3.1-0=0.

4. 01 = |[d]).

5. (ki) - v=k(u-v)=1- (kv). (associative property)

6. U-(V+W)=U-V+1T- W (distributive properties)
i-V—w)=ua-v—1u-w.



Let i and ¥ be two vectors in R® (or R?). There is a unique angle 6

between U and v with 0 < 0 < 7.
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Let i and ¥ be two vectors in R® (or R?). There is a unique angle 6

between U and v with 0 < 0 < 7.
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Theorem
Let U and ¥V be nonzero vectors, and let 6 denote the angle between 1 and

V. Then
a-v = |[d]| ||¥]| cosb.

e



Let i and ¥ be two vectors in R® (or R?). There is a unique angle 6

between U and v with 0 < 0 < 7.
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Theorem
Let U and ¥V be nonzero vectors, and let 6 denote the angle between 1 and

V. Then
a-v = |[d]| ||¥]| cosb.

e



Proof.

We first prove the Law of Cosines — a generalization of the Pythagorean

theorem:
A C
a/ |p
A m b— q

b
¢ =p°+ (b—-q)*=a’sin’ 0+ (b—acosh)’
=a’ (sin2 0 + cos> 9) +b% — 2abcosd
=a% +b% — 2abcosé.



Proof. (continued)

In terms of vectors, we see that

- =2 12 ) TR
[V = W[ = [[¥]]" + [[W|]" = 2[|¥][ ||¥][ cos &



Proof. (continued)

In terms of vectors, we see that

- =2 12 ) TR
[V = W[ = [[¥]]" + [[W|]" = 2[|¥][ ||W¥] cos &

S R, 2 - - 2
(V=w) - (V=w) =[[V||" =27 - W + [|W]|



Proof. (continued)

In terms of vectors, we see that

v B/
w
2 =112 =112 112 - .
[V = W[ = [[¥]]" + [[W|]" = 2[|¥][ ||W¥] cos &
(F—W) - (F—®) = |[¥]]* — 27 - & + ||W]”
A
12 02 —11 (1= —12 - o )
I¥117 + W7 = 2[[9]] [|W]| cos @ = [|¥]|" — 2¢ - W + [|W]|

I



Proof. (continued)

In terms of vectors, we see that

\J V—W
w
2 =112 =112 112 — .
IV = w|[" = [[¥]]" + [[W]]" — 2[|¥]] [|W]| cos &
(F— W) (F—W) = |[¥]]” — 27 - % + |||
4
917+ 11W]1* = 2/[9]] [[W]] cos 6 = ||¥]|* — 27 - & + |||
4
-7 = ||| ||¥]| cos .
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[| |I¥]] cos 6.

> 1f0<6 < 7, thencosf > 0.
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[| |I¥]] cos 6.

> 1f0<6 < 7, thencosf > 0.
> If0 = 7, then cosf = 0.
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[| |I¥]] cos 6.

> 1f0<6 < 7, thencosf > 0.
> If0 = 7, then cosf = 0.
> If 5 <0 < m thencosf < 0.
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[| |I¥]] cos 6.

> 1f0<6 < 7, thencosf > 0.
> If0 = 7, then cosf = 0.
> If 5 <0 < m thencosf < 0.

Therefore, for nonzero vectors i and v,
> i -V>0ifandonlyif0 <6 < 7.
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[[4]] |[¥]] cos 6.
> 1f0<6 < 7, thencosf > 0.

> If0 = 7, then cosf = 0.

> If 5 <0 < m thencosf < 0.

Therefore, for nonzero vectors i and v,
> i -V>0ifandonlyif0 <6 < 7.
G-

> i-V=0ifandonlyif 0 = 7.
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[| |I¥]] cos 6.

> 1f0<6 < 7, thencosf > 0.
> If0 = 7, then cosf = 0.
> If 5 <0 < m thencosf < 0.

Therefore, for nonzero vectors i and v,

> i -V>0ifandonlyif0 <6 < 7.

a
> i-v=0ifandonlyifd =%
a

5.
> d-V<oifandonlyif 5 <6 <.



Definition

Vectors @ and ¥ are orthogonal if and only if @ =0 or v

0

or 0

INIE)



Definition

Vectors @ and ¥ are orthogonal if and only if @ =0 or v

Theorem

Vectors U and V are orthogonal if and only if G-V = 0.

0

or 0

INIE)



Problem

Find the angle between U =



Problem

Find the angle between U = 0 | and V=

Solution

i v=1, |[d]| = V2 and ||[¥]] = V2.

Therefore,

- =

1

cos = _,u.v_,
G| [[¥]]

Since 0 <0 <, 0= 3.

Therefore, the angle between G and v is Z.

- 575~

3

N[ =



Problem

7 1
Find the angle between i = | —1 | and Vv = 4
3 —1

Solution

-V =0, and therefore the angle between the vectors is 7.



Problem

X -1
Find all vectors V= | y | orthogonal to bothi= | —3 [ andw= | 1
Z 2 1



Problem

X -1
Find all vectors V= | y | orthogonal to bothi= | —3 | and w =
Z 2

Solution

There are infinitely many such vectors.

1
1



-1
orthogonal to both i = | —3 | and w =
2

Problem
1

X
1

Yy

Find all vectors v =
Z

Solution
There are infinitely many such vectors. Since ¥ is orthogonal to both 4 and

= —x—3y+2z2=0

W,
= y+z=0

<4<
e



Solution (continued)
This is a homogeneous system of two linear equation in three variables.

—1—320_>..._>10—50
0 1 1|0 0 1 110

)
Therefore, v=t | —1 | forallt € R.
1



Problem

Are A(4,-7,9), B(6,4,4) and C(7,10, —6) the vertices of a right angle
triangle?



Problem
Are A(4,-7,9), B(6,4,4) and C(7,10, —6) the vertices of a right angle
triangle?

Solution
2 3 1
AB=| 11|, AC=| 17|, BC= 6
5 ~15 ~10




Problem
Are A(4,-7,9), B(6,4,4) and C(7,10, —6) the vertices of a right angle
triangle?

Solution
2 3 1
AB=| 11|, AC=| 17|, BC= 6
5 ~15 ~10

> AB-AC =6+ 187 + 75 # 0.



Problem
Are A(4,-7,9), B(6,4,4) and C(7,10, —6) the vertices of a right angle
triangle?

Solution
2 3 1
AB=| 11|, AC=| 17|, BC= 6
5 ~15 ~10

> AB-AC =6+ 187 + 75 # 0.
» BA - BC = (—AB)-BC = —2— 66— 50 # 0.



Problem
Are A(4,-7,9), B(6,4,4) and C(7,10, —6) the vertices of a right angle
triangle?

Solution
2 3 1
AB=| 11 AC=| 17|, BCG= 6
-5 —15 —10
> AB-AC =6+ 187 + 75 # 0.
» BA - BC = (—AB)-BC = —2— 66— 50 # 0.
» CA.CB = (-AC)- (-BC) = AC - BC = 3+ 102 + 150 # 0.



Problem
Are A(4,-7,9), B(6,4,4) and C(7,10, —6) the vertices of a right angle
triangle?

Solution
2 3 1
AB=| 11 AC=| 17|, BCG= 6
5 ~15 ~10

> AB-AC =6+ 187 + 75 # 0.
» BA.BC = (—AB)-BC = —2 — 66 — 50 £ 0.
» CA.CB = (-AC)- (-BC) = AC - BC = 3+ 102 + 150 # 0.

Because none of the angles is 7, the triangle is not a right angle triangle.



Problem

A rhombus is a parallelogram with sides of equal length. Prove that the
diagonals of a rhombus are perpendicular.



Problem

A rhombus is a parallelogram with sides of equal length. Prove that the
diagonals of a rhombus are perpendicular.

Solution
Define the parallelogram (rhombus) by

vectors U and V.

Then the diagonals are i 4 V and i — V.

Show that U + v and U — ¥ are perpendicular.



Problem

A rhombus is a parallelogram with sides of equal length. Prove that the
diagonals of a rhombus are perpendicular.

Solution
Define the parallelogram (rhombus) by

vectors U and V.
Then the diagonals are i 4 V and i — V.

Show that U + v and U — ¥ are perpendicular.

5 3 o o = = o -
u-u—u-v+v-u—v-Vv

= | —d v 9
=12 2
=@l = [¥]]

0, since [l = |7l

Therefore, the diagonals are perpendicular.



Projections



Projections



Projections

Given two nonzero vectors U and d, one can always express U as a sum
i = U1 + U2, where 1 is parallel to d and w2 is orthogonal to d.



Projections

Given two nonzero vectors U and d, one can always express U as a sum
U = Uy + U2, where U is parallel to d and 13 is orthogonal to d.

=1}




Projections

Given two nonzero vectors U and d, one can always express U as a sum
i = U1 + U2, where 1 is parallel to d and w2 is orthogonal to d.

=1}

d; is the projection of U onto d, written @y = proj;u.



Projections

Given two nonzero vectors U and d, one can always express U as a sum
i = U1 + U2, where 1 is parallel to d and w2 is orthogonal to d.

=1}

d; is the projection of U onto d, written @y = proj;u.

How to find U7 = projaﬁ' ?



- =0
iy - (td) =0
t(da-d) =0

f-d=0
(@—i)-d=0
i-d—w-d=0
i-d—(td)-d=0
g-d—t(d-d)y=0
d-d—t|d|*=0
i-d=t||d|?
t:ﬁﬂ&
[[d][?
L d-d
u; =

=i
=

[o¥]

AA
=TI =T}
gLE

[
o+

2, &
R B

(t # 0 b.c. @#0)

(ﬁ1 + Uy = ﬁ)

(i = td)
(d #0)
(T = td)






=11

Theorem

Let @ and d be vectors with d #0.

1. The projection of @ onto dis

1 = projzil =



=11

Theorem

Let @ and d be vectors with d #0.

1. The projection of @ onto dis

U; = proj=u = ﬁa&
Tl
2. B
U = U — ﬁ_:d(—i‘
[|d][?

is orthogonal to d.



=

1 = proj




=

1 = proj







i, = proji = (-4 )4 — wd g
up = projgu (u HdH)HdH HdH?d
N——

length l

direction



Problem

2 3
Letd=| —1 and Vv = 1 |. Find vectors U1 and u> so that
0 -1

U = U1 + U2, with T parallel to v and Uz orthogonal to V.



Problem

2 3
Letd=| —1 and Vv = 1 |. Find vectors U1 and u> so that
0 -1

U = U1 + U2, with T parallel to v and Uz orthogonal to V.

Solution

5 3 15/11
v= = 1| = 5/11
~1 —5/11




Problem

2 3
Letd=| —1 and V = 1 |. Find vectors U1 and u> so that
0 -1

U = U1 + U2, with T parallel to v and Uz orthogonal to V.

Solution
Lo 15/11
) = projyil = —— o7 = S0 o1 =] sm
|[¥]] 11

~1 | ~5/11
2 5 3 1 7 7/11
B=d-th=| -1 |- =7 | 16| =] —16/11
0 —1 5 5/11




Problem
Let P(3,2, —1) be a point in R® and L a line with equation

X 2 3
y | = 1 [ +t| —1
z 3 —2

Find the shortest distance from P to L, and find the point Q on L that is
closest to P.



Problem
Let P(3,2, —1) be a point in R® and L a line with equation

X 2 3
y | = 1 [ +t| —1
z 3 —2

Find the shortest distance from P to L, and find the point Q on L that is
closest to P.

Solution
Let Pg = Po(2,1,3) be a point on L,

and let J:[ 3 -1 -2 ]T.
Then PoQ = proj;PoP, 06 = 0P, + PoG,

and the shortest distance from P to L is

the length of Q?, where Q? = Fﬁ) — m




Solution (continued)

PP=[1 1 -4]"d=[3 -1 —2]"

Pod} = projPub = PO g _

]2



Solution (continued)

PP=[1 1 -4]",d=[3
ﬁd~:

ﬁ prOJdﬁ

Therefore,




Solution (continued)

Finally, the shortest distance from P (3,2, —1) to L is the length of (ﬁ,
where

QP =PP—PoG=| 1 |-



Solution (continued)

Finally, the shortest distance from P (3,2, —1) to L is the length of (ﬁ,
where
15 —4

1
QP =PoP - PQ=| 1 -5 :% 6

—4 —10 -9

0=

Therefore the shortest distance from P to L is

H@H— = T (o 9>2Z§m.




Planes



Planes



Planes

Definition

A nonzero vector 1l is a normal vector to a plane if and only if i - ¥ = 0 for
every vector V in the plane.

Given a point Py and a nonzero vector i, there is a unique plane containing
Py and orthogonal to 1.



Consider a plane containing a point Py and orthogonal to vector @i, and let
P be an arbitrary point on this plane.



Consider a plane containing a point Py and orthogonal to vector @i, and let
P be an arbitrary point on this plane.

Then

=1}
=
o

I
L



Consider a plane containing a point Py and orthogonal to vector @i, and let
P be an arbitrary point on this plane.

Then

=1}
=
o

I
L

or, equivalently, .
ii- (0B — 0Pg) = 0,

and is a vector equation of the plane.



=]

2}
S
=

Il

5

=



F-(0P—0Pp)=0 <= i 0P=i-0P

by setting Po = Po(x0,y0,20), P =P(x,y,2), @ = [ a b ¢ }T



i-(0P—0P)=0 < ii-0P

by setting Po = Po(x0,y0,20), P = P(x,y,2)

a X a
— b y|=1|b
C A c



by setting Po = Po(x0,y0,20), P =P(x,y,2), @ = [ a b ¢ }
a X a X0
— b y|=1|b ]| | yo
C Z (¢ )
<= ax + by + ¢z = ax¢ + byo + czo,



7 (0P—0Pp)=0 <= i 0P=i-0P,

-

by setting Po = Po(x0,y0,20), P =P(x,y,2), @ =

a X
= b ||y
C Z

<= ax + by + cz = axo + byo + czo,

setting d = axg + byo + czo — a scalar



by setting Po = Po(x0,y0,20), P =P(x,y,2), @ = [ a b ¢ }
a X a X0
— b y|=1|b ]| | yo
C Z (¢ )

—

<= ax + by + cz = axo + byo + czo,

setting d = axg + byo + czo — a scalar

ax + by 4+ cz = d |, where a,b,c,d € R.




by setting Po = Po(x0,y0,20), P =P(x,y,2), @ = [ a b ¢ }
a X a X0
— b y|=1|b ]| | yo
C Z (¢ )

<= ax + by + cz = axo + byo + czo,

setting d = axg + byo + czo — a scalar

<= |ax+by+cz=d|, where a,b,c,d € R.

This is the scalar equation of the plane.



Problem

Find an equation of the plane containing Po(1, —1,0) and orthogonal to
T

i=[-3 5 2] .



Problem

Find an equation of the plane containing Po(1, —1,0) and orthogonal to
T
i=[-3 5 2] .

Solution
A vector equation of this plane is
-3 x—1

5 |- y+1 | =0
2 Z



Problem

Find an equation of the plane containing Po(1, —1,0) and orthogonal to
T
i=[-3 5 2] .

Solution

A vector equation of this plane is

-3 x—1
5 |- y+1 | =0
2 Z

A scalar equation of this plane is
—3x+ 5y + 2z = —3(1) + 5(—1) + 2(0) = -8,
i.e., the plane has scalar equation

—3x + by + 2z = —8.



Problem

Find the shortest distance from the point P(2,3,0) to the plane with
equation 5x +y +z = —1, and find the point QQ on the plane that is closest
to P.



Problem

Find the shortest distance from the point P(2,3,0) to the plane with
equation 5x +y +z = —1, and find the point QQ on the plane that is closest
to P.

Solution

P(27 37 0)

Pick an arbitrary point Pg on the plane.

Then (ﬁ = projﬁPAOﬁ,
H@H is the shortest distance,
and (TCS — 0P — @




Problem

Find the shortest distance from the point P(2,3,0) to the plane with
equation 5x +y +z = —1, and find the point QQ on the plane that is closest
to P.

Solution

P(27 37 0)

Pick an arbitrary point Pg on the plane.
Then (ﬁ = projﬁPoﬁ,

H@H is the shortest distance,
and (TCS = (ﬁ _ @




Problem

Find the shortest distance from the point P(2,3,0) to the plane with
equation 5x +y +z = —1, and find the point QQ on the plane that is closest
to P.

Solution

P(27 37 0)

Pick an arbitrary point Pg on the plane.

Then (ﬁ = projﬁPAOﬁ,
H@H is the shortest distance,
and (TCS — 0P — @

i=[5 1 1] Choose Py =Py(0,0,-1).



Problem

Find the shortest distance from the point P(2,3,0) to the plane with
equation 5x +y +z = —1, and find the point QQ on the plane that is closest
to P.

Solution

P(2,3,0)

Pick an arbitrary point Pg on the plane.

Then (ﬁ = projﬁPAOﬁ,
H@H is the shortest distance,
and (TCS — 0P — @

i=[5 1 1] ChoosePy=Py(0,0,—1). Then

PP=[2 3 1]"



Solution (continued)
P(2,3,0)




Solution (continued)
P(2,3,0)




Solution (continued)
P(2,3,0)

N
n

/

@ = Projﬁ@ =

Since ||Q?|| = ;—‘; 27 = 14‘/3, the shortest distance from P to the plane is

E)

Pob=[2 3 1]7

i=[5 1 1]"
ﬁ'ﬁﬁfg[k% 1]"
(eI '




Solution (continued)
P(2,3,0)

@:projﬁ@:ﬁ'ﬁﬁzg[ 5 1 1",

0
|15 27

Since ||Q?|| = ;—‘; 27 = 149‘/3, the shortest distance from P to the plane is %.

To find Q, we have

G=0F-Qf = [2 3 0]"- X5 1 177

,277[
= L6 oer -1 T
27



Solution (continued)
P(2,3,0)

@:projﬁ@:ﬁ'ﬁﬁzg[ 5 1 1",

0
|15 27

Since ||Q?|| = ;—‘; 27 = 149‘/3, the shortest distance from P to the plane is %.

To find Q, we have

G=0F-Qf = [2 3 0]"- X5 1 177

,277[
= L6 oer -1 T
27

Therefore Q = Q (_%’ %7_%)'



Remark
Here is a general answer: the distance from P (xo, yo,%o0) to the plane
ax + by +cz =d is

\axo =+ byo + czo — d|

~/a2+b2+c2

distance =




Cross Product



The Cross Product



The Cross Product

Definition

Letﬁ:[xl Vi Z1 ]Tandx_/':[xz yo  Z2 ]T. Then

Yiz2 — 71y2
Lo
UxvV=| —(x122 — z1x2)
X1y2 — Yi1X2



The Cross Product

Definition

Letﬁ:[xl Vi Z1 ]Tandx_/’:[xz yo  Z2 ]T. Then

Yiz2 — 71y2
Lo
UxvV=| —(x122 — z1x2)
X1y2 — Yi1X2

Remark
i X V is a vector:
» Direction: orthogonal to both @ and V.

» Size: the area of the corresponding parallelogram.



Remark

A mnemonic device:

=1}
X
<
Il
Pl

Or equivalently,

X1

Y1
zZ1

X2
y2 |, where i=
Z2
i
i
Uxv= X1



Theorem

Let ¥,w € R>.



Theorem
Let ¥,w € R>.

1. ¥V X W is orthogonal to both ¥ and w.



Theorem
Let ¥,w € R>.
1. ¥V X W is orthogonal to both ¥ and w.

2. If 7 and W are both nonzero, then @ x w = 0 if and only if ¥ and W are
parallel.



Problem

Find all vectors orthogonal to both 0 = [ -1 -3 2 ]T and
V= [ 0 1 1 ]T‘ (We previously solved this using the dot product.)



Problem
Find all vectors orthogonal to both 0 = [ -1 -3 2 }T and

V= [ 0 1 1 ]T‘ (We previously solved this using the dot product.)
Solution
i -1 0 -5
ix¥=|] -3 1 |=-5i4+j-k= 1
K 21 -1

Any scalar multiple of @ x ¥V is also orthogonal to both i and ¥, so
)
t 1|, VteR,
—1

gives all vectors orthogonal to both @ and V.

(Compare this with our earlier answer.)



Problem

Given two lines

X 3 1 X 1
Lq: vy = 1 | +s 1 and Lo : y | = 2 |+t
Z — —1 4 0]

A. Find the shortest distance between L; and Lo.
B. Find the points P on L; and Q on Ls that are closest together.



Solution

Choose P1(3,1,—1) on Ly and P2(1,2,0) on L.

! 1 1
i Let d; = 1 | and d2 = | 0 | denote direction

‘ -1 2
?l\(;\ .
vectors for L; and L, respectively.



P1(3,1,-1)

SEE

The shortest distance between L1 and Ly is the length

of the projection of P; P3 onto it = d; x ds.



P1(3,1,-1)

The shortest distance between L1 and Ly is the length

of the projection of P; P3 onto it = d; x ds.

—2 1 1 2

ey
P1Ps = 1 and 0= 1 X 0 = -3
1 —1 2 —1



P1(3,1,-1) 1
3= [ | }d - {
—1

The shortest distance between L1 and Ly is the length

of the projection of P; P3 onto it = d; x ds.

—2 1 1 2
—
P1Ps = 1 and 0= 1 X 0 = -3
1 -1 2 -1
—
. —— PiPoy-@i L PPy -1
projzP1P2 = |1|ﬁ|2|2 o, and ||projzP1P2|| = %



P1(3,1,-1) 1
3= [ | }d - {
—1

The shortest distance between L1 and Ly is the length

of the projection of P; P3 onto it = d; x ds.

-2 1 1 2
—
P1Ps = 1 and 0= 1 X 0 = -3
1 —1 2 —1
—
. —— PiPoy-@i L PPy -1
projzP1P2 = |1|ﬁ|2|2 o, and [|projzP1P2|| = w

1]

Therefore, the shortest distance between L; and Lo is % E %«14.
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O_P)z 1+s :|forsomeseR;

—1—-s

P2(?§?§\ [ 1+t
Q o3 =

2 for some t € R.
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Now@:[ —2—s+t 1—s 14+s+2t ]TisorthogonaltobothL1andL2,30

%61:0 and @%1'2:0,

ie.,
—2-3s—t = 0
s+ 5t 0.
This system has unique solution s = —2 and t = %. Therefore,
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The shortest distance between L; and Ly is ||I@||. Since

16 2 2 8 2
P=P(—,=,—= and = =,2,= ],
(7 7 7) Q Q(? 7)

1 8 1 16 1| -8
aes =[]

1 4
PG| = V22 = ZVId,

and



The shortest distance between L; and Ly is ||I@||. Since

16 2 2 8 2
P=P(—,-,—= and = -2,- ],
(7 7 7) Q Q(? 7)

8 16 -8
P_C,E:l Vi o | =1 12 )
7| o o — 7 1

and

1 4
PG| = ~V221 = _VId.

Therefore the shortest distance between L; and Ls is %\/14.
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Shortest Distances

Problem ( Challenge Problem )

Write yourself a plan to find the shortest distance in R® between either a
point, line or plane, to either a point, line or plane.



Point-point distance



Point-point distance

If P and Q are two points, then d (P, Q) = Pﬁ\

P/Q



Point-plane distance



Point-plane distance

If P is a point and ¥ : 1 - X = d is a plane containing a point Q, then

i

]

d(P,%) =




Point-line distance



Point-line distance

If P is a point and L is a line ©(t) = Q + t, then

s

|

d(P,L) =




Line-line distance



Line-line distance

If L is a line ©(t) = Q + tU and M is another line § = P + tV, then

’P ~(ﬁ><\7)‘
aem =1 "1

[T x V|




Plane-plane distance



Plane-plane distance

IfY:0-X=dand ©:1-X = e are two parallel planes, then

d(s,e)=e=dl

I
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