Math 221: LINEAR ALGEBRA

Chapter 4. Vector Geometry §4-2. Projections and Planes

 $\begin{tabular}{ll} Le & Chen 1 \\ Emory University, 2021 Spring \\ \end{tabular}$

(last updated on 03/01/2021)

Projections

Planes

Cross Product

Shortest Distances

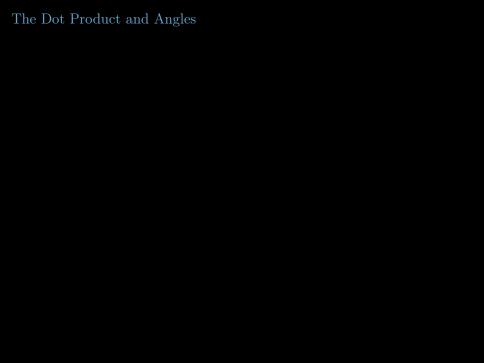
NOTE: Much of this chapter is what you would learn in Multivariable Calculus. You might find it interesting/useful to read. But I will only cover the material important to this course.

Projections

Planes

Cross Produc

Shortest Distances



Definition

Let
$$\vec{u} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$ be vectors in \mathbb{R}^3 . The dot product of \vec{u} and \vec{v} is
$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 + z_1 z_2,$$

i.e., $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}$ is a scalar.

Definition

Let
$$\vec{u} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$ be vectors in \mathbb{R}^3 . The dot product of \vec{u} and \vec{v} is
$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 + z_1 z_2,$$

i.e., $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}$ is a scalar.

Remark

Another way to think about the dot product is as the 1×1 matrix

$$\vec{\mathbf{u}}^{\mathrm{T}}\vec{\mathbf{v}} = \left[\begin{array}{ccc} \mathbf{x}_1 & \mathbf{y}_1 & \mathbf{z}_1 \end{array} \right] \left[\begin{array}{c} \mathbf{x}_2 \\ \mathbf{y}_2 \\ \mathbf{z}_2 \end{array} \right] = \left[\begin{array}{ccc} \mathbf{x}_1\mathbf{x}_2 + \mathbf{y}_1\mathbf{y}_2 + \mathbf{z}_1\mathbf{z}_2 \end{array} \right].$$

Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^3 (or \mathbb{R}^2) and let $k \in \mathbb{R}$.

Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^3 (or \mathbb{R}^2) and let $k \in \mathbb{R}$.

Let u, v, w be vectors in \mathbb{R}^* (or \mathbb{R}^*) and let $k \in \mathbb{R}$ 1. $\vec{u} \cdot \vec{v}$ is a real number.

Let \vec{u},\vec{v},\vec{w} be vectors in \mathbb{R}^3 (or $\mathbb{R}^2)$ and let $k\in\mathbb{R}.$

- 1. $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}$ is a real number.
- 2. $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \vec{\mathbf{v}} \cdot \vec{\mathbf{u}}$.

(commutative property)

Let \vec{u},\vec{v},\vec{w} be vectors in \mathbb{R}^3 (or $\mathbb{R}^2)$ and let $k\in\mathbb{R}.$

(commutative property)

- 1. $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}$ is a real number.
- $2. \ \vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \vec{\mathbf{v}} \cdot \vec{\mathbf{u}}.$
- $3. \ \vec{\mathbf{u}} \cdot \vec{\mathbf{0}} = 0.$

Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^3 (or \mathbb{R}^2) and let $k \in \mathbb{R}$.

(commutative property)

- 1. $\vec{u} \cdot \vec{v}$ is a real number.
- $2. \ \vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \vec{\mathbf{v}} \cdot \vec{\mathbf{u}}.$

$$3. \ \vec{\mathbf{u}} \cdot \vec{\mathbf{0}} = 0.$$

4. $\vec{u} \cdot \vec{u} = ||\vec{u}||^2$.

Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^3 (or \mathbb{R}^2) and let $k \in \mathbb{R}$.

1. $\vec{u} \cdot \vec{v}$ is a real number.

2. $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \vec{\mathbf{v}} \cdot \vec{\mathbf{u}}$. (commutative property)

3. $\vec{u} \cdot \vec{0} = 0$.

4. $\vec{\mathbf{u}} \cdot \vec{\mathbf{u}} = ||\vec{\mathbf{u}}||^2$.

5. $(\mathbf{k}\vec{\mathbf{u}}) \cdot \vec{\mathbf{v}} = \mathbf{k}(\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}) = \vec{\mathbf{u}} \cdot (\mathbf{k}\vec{\mathbf{v}}).$ (associative property)

Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^3 (or \mathbb{R}^2) and let $k \in \mathbb{R}$.

1.
$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}$$
 is a real number.

2.
$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$
. (commutative property)
3. $\vec{u} \cdot \vec{0} = 0$.

3.
$$\vec{u} \cdot \vec{0} = 0$$
.

4.
$$\vec{\mathbf{u}} \cdot \vec{\mathbf{u}} = ||\vec{\mathbf{u}}||^2$$
.

4.
$$\vec{u} \cdot \vec{u} = ||\vec{u}||^2$$
.
5. $(k\vec{u}) \cdot \vec{v} = k(\vec{u} \cdot \vec{v}) = \vec{u} \cdot (k\vec{v})$. (associative proper

$$\begin{aligned} \mathbf{5}. & \ (\mathbf{k}\vec{\mathbf{u}}) \cdot \vec{\mathbf{v}} = \mathbf{k}(\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}) = \vec{\mathbf{u}} \cdot (\mathbf{k}\vec{\mathbf{v}}). \end{aligned} & \text{(associative property)} \\ \mathbf{6}. & \ \vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = \vec{\mathbf{u}} \cdot \vec{\mathbf{v}} + \vec{\mathbf{u}} \cdot \vec{\mathbf{w}}. \\ & \ \vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} - \vec{\mathbf{w}}) = \vec{\mathbf{u}} \cdot \vec{\mathbf{v}} - \vec{\mathbf{u}} \cdot \vec{\mathbf{w}}. \end{aligned} & \text{(distributive properties)}$$

Let \vec{u} and \vec{v} be two vectors in \mathbb{R}^3 (or \mathbb{R}^2). There is a unique angle θ between \vec{u} and \vec{v} with $0 \le \theta \le \pi$.

Let \vec{u} and \vec{v} be two vectors in \mathbb{R}^3 (or \mathbb{R}^2). There is a unique angle θ between \vec{u} and \vec{v} with $0 \le \theta \le \pi$.

Theorem

Let \vec{u} and \vec{v} be nonzero vectors, and let θ denote the angle between \vec{u} and \vec{v} . Then

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = ||\vec{\mathbf{u}}|| \ ||\vec{\mathbf{v}}|| \cos \theta.$$

Let \vec{u} and \vec{v} be two vectors in \mathbb{R}^3 (or \mathbb{R}^2). There is a unique angle θ between \vec{u} and \vec{v} with $0 \le \theta \le \pi$.

Theorem

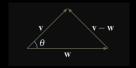
Let \vec{u} and \vec{v} be nonzero vectors, and let θ denote the angle between \vec{u} and \vec{v} . Then

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = ||\vec{\mathbf{u}}|| \ ||\vec{\mathbf{v}}|| \cos \theta.$$

Proof.

We first prove the Law of Cosines – a generalization of the Pythagorean theorem:

$$c^{2} = p^{2} + (b - q)^{2} = a^{2} \sin^{2} \theta + (b - a \cos \theta)^{2}$$
$$= a^{2} (\sin^{2} \theta + \cos^{2} \theta) + b^{2} - 2ab \cos \theta$$
$$= a^{2} + b^{2} - 2ab \cos \theta.$$

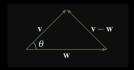


$$||\vec{v} - \vec{w}||^2 = ||\vec{v}||^2 + ||\vec{w}||^2 - 2||\vec{v}|| \, ||\vec{w}|| \cos \theta$$

$$\begin{aligned} ||\vec{\mathbf{v}} - \vec{\mathbf{w}}||^2 &= ||\vec{\mathbf{v}}||^2 + ||\vec{\mathbf{w}}||^2 - 2||\vec{\mathbf{v}}|| \, ||\vec{\mathbf{w}}|| \cos \theta \\ || & \\ (\vec{\mathbf{v}} - \vec{\mathbf{w}}) \cdot (\vec{\mathbf{v}} - \vec{\mathbf{w}}) &= ||\vec{\mathbf{v}}||^2 - 2\vec{\mathbf{v}} \cdot \vec{\mathbf{w}} + ||\vec{\mathbf{w}}||^2 \end{aligned}$$



$$\begin{split} ||\vec{\mathbf{v}} - \vec{\mathbf{w}}||^2 &= ||\vec{\mathbf{v}}||^2 + ||\vec{\mathbf{w}}||^2 - 2||\vec{\mathbf{v}}|| \, ||\vec{\mathbf{w}}|| \cos \theta \\ || \\ (\vec{\mathbf{v}} - \vec{\mathbf{w}}) \cdot (\vec{\mathbf{v}} - \vec{\mathbf{w}}) &= ||\vec{\mathbf{v}}||^2 - 2\vec{\mathbf{v}} \cdot \vec{\mathbf{w}} + ||\vec{\mathbf{w}}||^2 \\ &\downarrow \\ ||\vec{\mathbf{v}}||^2 + ||\vec{\mathbf{w}}||^2 - 2||\vec{\mathbf{v}}|| \, ||\vec{\mathbf{w}}|| \cos \theta = ||\vec{\mathbf{v}}||^2 - 2\vec{\mathbf{v}} \cdot \vec{\mathbf{w}} + ||\vec{\mathbf{w}}||^2 \\ &\downarrow \end{split}$$



$$\begin{aligned} ||\vec{\mathbf{v}} - \vec{\mathbf{w}}||^2 &= ||\vec{\mathbf{v}}||^2 + ||\vec{\mathbf{w}}||^2 - 2||\vec{\mathbf{v}}|| \, ||\vec{\mathbf{w}}|| \cos \theta \\ || \\ (\vec{\mathbf{v}} - \vec{\mathbf{w}}) \cdot (\vec{\mathbf{v}} - \vec{\mathbf{w}}) &= ||\vec{\mathbf{v}}||^2 - 2\vec{\mathbf{v}} \cdot \vec{\mathbf{w}} + ||\vec{\mathbf{w}}||^2 \\ \downarrow \downarrow \\ ||\vec{\mathbf{v}}||^2 + ||\vec{\mathbf{w}}||^2 - 2||\vec{\mathbf{v}}|| \, ||\vec{\mathbf{w}}|| \cos \theta = ||\vec{\mathbf{v}}||^2 - 2\vec{\mathbf{v}} \cdot \vec{\mathbf{w}} + ||\vec{\mathbf{w}}||^2 \\ \downarrow \downarrow \\ \vec{\mathbf{u}} \cdot \vec{\mathbf{v}} &= ||\vec{\mathbf{u}}|| \, ||\vec{\mathbf{v}}|| \cos \theta. \end{aligned}$$

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = ||\vec{\mathbf{u}}|| \ ||\vec{\mathbf{v}}|| \cos \theta.$$

 $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = ||\vec{\mathbf{u}}|| \, ||\vec{\mathbf{v}}|| \cos \theta.$

 $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = ||\vec{\mathbf{u}}|| \, ||\vec{\mathbf{v}}|| \cos \theta.$

▶ If
$$0 \le \theta < \frac{\pi}{2}$$
, then $\cos \theta > 0$.

If
$$\theta = \frac{\pi}{2}$$
, then $\cos \theta = 0$.

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = ||\vec{\mathbf{u}}|| \, ||\vec{\mathbf{v}}|| \cos \theta.$$

- ▶ If $0 \le \theta < \frac{\pi}{2}$, then $\cos \theta > 0$.
- If $\theta = \frac{\pi}{2}$, then $\cos \theta = 0$.
- If $\frac{\pi}{2} < \theta \le \pi$, then $\cos \theta < 0$.

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = ||\vec{\mathbf{u}}|| \, ||\vec{\mathbf{v}}|| \cos \theta.$$

▶ If
$$0 \le \theta < \frac{\pi}{2}$$
, then $\cos \theta > 0$.

▶ If
$$\theta = \frac{\pi}{2}$$
, then $\cos \theta = 0$.

lf
$$\frac{\pi}{2} < \theta \le \pi$$
, then $\cos \theta < 0$.

Therefore, for nonzero vectors $\vec{\mathrm{u}}$ and $\vec{\mathrm{v}},$

$$ightharpoonup \vec{\mathrm{u}} \cdot \vec{\mathrm{v}} > 0$$
 if and only if $0 \le \theta < \frac{\pi}{2}$.

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = ||\vec{\mathbf{u}}|| \, ||\vec{\mathbf{v}}|| \cos \theta.$$

▶ If
$$0 \le \theta < \frac{\pi}{2}$$
, then $\cos \theta > 0$.

If
$$\theta = \frac{\pi}{2}$$
, then $\cos \theta = 0$.

▶ If
$$\frac{\pi}{2} < \theta \le \pi$$
, then $\cos \theta < 0$.

Therefore, for nonzero vectors $\vec{\mathrm{u}}$ and $\vec{\mathrm{v}},$

$$\qquad \qquad \vec{\mathrm{u}} \cdot \vec{\mathrm{v}} > 0 \text{ if and only if } 0 \leq \theta \ < \frac{\pi}{2}.$$

$$ightharpoonup \vec{u} \cdot \vec{v} = 0$$
 if and only if $\theta = \frac{\pi}{2}$.

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = ||\vec{\mathbf{u}}|| \, ||\vec{\mathbf{v}}|| \cos \theta.$$

▶ If
$$0 \le \theta < \frac{\pi}{2}$$
, then $\cos \theta > 0$.

If
$$\theta = \frac{\pi}{2}$$
, then $\cos \theta = 0$.

▶ If
$$\frac{\pi}{2} < \theta \le \pi$$
, then $\cos \theta < 0$.

Therefore, for nonzero vectors \vec{u} and \vec{v} ,

$$ightharpoonup \vec{u} \cdot \vec{v} > 0$$
 if and only if $0 \le \theta < \frac{\pi}{2}$.

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = 0$$
 if and only if $\theta = \frac{\pi}{2}$.

$$ightharpoonup \vec{u} \cdot \vec{v} < 0$$
 if and only if $\frac{\pi}{2} < \theta \le \pi$.

Definition

Vectors $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$ are orthogonal if and only if $\vec{\mathbf{u}} = \vec{\mathbf{0}}$ or $\vec{\mathbf{v}} = \vec{\mathbf{0}}$ or $\theta = \frac{\pi}{2}$.

Definition

Vectors $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$ are orthogonal if and only if $\vec{\mathbf{u}} = \vec{\mathbf{0}}$ or $\vec{\mathbf{v}} = \vec{\mathbf{0}}$ or $\theta = \frac{\pi}{2}$.

Theorem

Vectors $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$ are orthogonal if and only if $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = 0$.

Find the angle between
$$\vec{\mathbf{u}} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
 and $\vec{\mathbf{v}} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$.

Find the angle between
$$\vec{\mathbf{u}} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
 and $\vec{\mathbf{v}} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$.

Solution

$$\begin{split} \vec{\mathbf{u}} \cdot \vec{\mathbf{v}} &= 1, \ ||\vec{\mathbf{u}}|| = \sqrt{2} \ \text{and} \ ||\vec{\mathbf{v}}|| = \sqrt{2}. \end{split}$$
 Therefore,
$$\cos \theta = \frac{\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}}{||\vec{\mathbf{u}}|| \ ||\vec{\mathbf{v}}||} = \frac{1}{\sqrt{2}\sqrt{2}} = \frac{1}{2}.$$

Since
$$0 \le \theta \le \pi$$
, $\theta = \frac{\pi}{3}$.

Therefore, the angle between \vec{u} and \vec{v} is $\frac{\pi}{3}$.

Find the angle between
$$\vec{\mathbf{u}} = \begin{bmatrix} 7 \\ -1 \\ 3 \end{bmatrix}$$
 and $\vec{\mathbf{v}} = \begin{bmatrix} 1 \\ 4 \\ -1 \end{bmatrix}$.

Solution

 $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = 0$, and therefore the angle between the vectors is $\frac{\pi}{2}$.

Find all vectors $\vec{\mathbf{v}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix}$ orthogonal to both $\vec{\mathbf{u}} = \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix}$ and $\vec{\mathbf{w}} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.

Find all vectors $\vec{\mathbf{v}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix}$ orthogonal to both $\vec{\mathbf{u}} = \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix}$ and $\vec{\mathbf{w}} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.

Solution

There are infinitely many such vectors.

Find all vectors $\vec{\mathbf{v}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix}$ orthogonal to both $\vec{\mathbf{u}} = \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix}$ and $\vec{\mathbf{w}} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.

Solution

There are infinitely many such vectors. Since \vec{v} is orthogonal to both \vec{u} and \vec{w} ,

$$\vec{v} \cdot \vec{u} = -x - 3y + 2z = 0$$

 $\vec{v} \cdot \vec{w} = y + z = 0$

This is a homogeneous system of two linear equation in three variables.

Therefore, $\vec{\mathbf{v}} = \mathbf{t} \begin{bmatrix} 5 \\ -1 \\ 1 \end{bmatrix}$ for all $\mathbf{t} \in \mathbb{R}$.

Are A(4, -7, 9), B(6, 4, 4) and C(7, 10, -6) the vertices of a right angle triangle?

Are A(4, -7, 9), B(6, 4, 4) and C(7, 10, -6) the vertices of a right angle triangle?

$$\overrightarrow{AB} = \begin{bmatrix} 2\\11\\-5 \end{bmatrix}, \quad \overrightarrow{AC} = \begin{bmatrix} 3\\17\\-15 \end{bmatrix}, \quad \overrightarrow{BC} = \begin{bmatrix} 1\\6\\-10 \end{bmatrix}$$

Are A(4, -7, 9), B(6, 4, 4) and C(7, 10, -6) the vertices of a right angle triangle?

$$\overrightarrow{AB} = \begin{bmatrix} 2\\11\\-5 \end{bmatrix}, \quad \overrightarrow{AC} = \begin{bmatrix} 3\\17\\-15 \end{bmatrix}, \quad \overrightarrow{BC} = \begin{bmatrix} 1\\6\\-10 \end{bmatrix}$$

$$ightharpoonup \overrightarrow{AB} \cdot \overrightarrow{AC} = 6 + 187 + 75 \neq 0.$$

Are A(4, -7, 9), B(6, 4, 4) and C(7, 10, -6) the vertices of a right angle triangle?

$$\overrightarrow{AB} = \begin{bmatrix} 2\\11\\-5 \end{bmatrix}, \quad \overrightarrow{AC} = \begin{bmatrix} 3\\17\\-15 \end{bmatrix}, \quad \overrightarrow{BC} = \begin{bmatrix} 1\\6\\-10 \end{bmatrix}$$

$$ightharpoonup \overrightarrow{AB} \cdot \overrightarrow{AC} = 6 + 187 + 75 \neq 0.$$

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = (-\overrightarrow{AB}) \cdot \overrightarrow{BC} = -2 - 66 - 50 \neq 0.$$

Are A(4, -7, 9), B(6, 4, 4) and C(7, 10, -6) the vertices of a right angle triangle?

$$\overrightarrow{AB} = \begin{bmatrix} 2\\11\\-5 \end{bmatrix}, \quad \overrightarrow{AC} = \begin{bmatrix} 3\\17\\-15 \end{bmatrix}, \quad \overrightarrow{BC} = \begin{bmatrix} 1\\6\\-10 \end{bmatrix}$$

- $ightharpoonup \overrightarrow{AB} \cdot \overrightarrow{AC} = 6 + 187 + 75 \neq 0.$
- $\overrightarrow{BA} \cdot \overrightarrow{BC} = (-\overrightarrow{AB}) \cdot \overrightarrow{BC} = -2 66 50 \neq 0.$
- $ightharpoonup \overrightarrow{CA} \cdot \overrightarrow{CB} = (-\overrightarrow{AC}) \cdot (-\overrightarrow{BC}) = \overrightarrow{AC} \cdot \overrightarrow{BC} = 3 + 102 + 150 \neq 0.$

Are A(4, -7, 9), B(6, 4, 4) and C(7, 10, -6) the vertices of a right angle triangle?

Solution

$$\overrightarrow{AB} = \begin{bmatrix} 2\\11\\-5 \end{bmatrix}, \quad \overrightarrow{AC} = \begin{bmatrix} 3\\17\\-15 \end{bmatrix}, \quad \overrightarrow{BC} = \begin{bmatrix} 1\\6\\-10 \end{bmatrix}$$

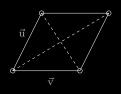
- $ightharpoonup \overrightarrow{AB} \cdot \overrightarrow{AC} = 6 + 187 + 75 \neq 0.$
- $ightharpoonup \overrightarrow{BA} \cdot \overrightarrow{BC} = (-\overrightarrow{AB}) \cdot \overrightarrow{BC} = -2 66 50 \neq 0.$
- $\overrightarrow{CA} \cdot \overrightarrow{CB} = (\overrightarrow{-AC}) \cdot (-\overrightarrow{BC}) = \overrightarrow{AC} \cdot \overrightarrow{BC} = 3 + 102 + 150 \neq 0.$

Because none of the angles is $\frac{\pi}{2}$, the triangle is not a right angle triangle.

A rhombus is a parallelogram with sides of equal length. Prove that the diagonals of a rhombus are perpendicular.

A rhombus is a parallelogram with sides of equal length. Prove that the diagonals of a rhombus are perpendicular.

Solution



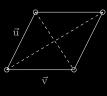
Define the parallelogram (rhombus) by vectors $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$.

Then the diagonals are $\vec{u} + \vec{v}$ and $\vec{u} - \vec{v}$.

Show that $\vec{u} + \vec{v}$ and $\vec{u} - \vec{v}$ are perpendicular.

A rhombus is a parallelogram with sides of equal length. Prove that the diagonals of a rhombus are perpendicular.

Solution



Define the parallelogram (rhombus) by vectors $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$.

Then the diagonals are $\vec{u} + \vec{v}$ and $\vec{u} - \vec{v}$.

Show that $\vec{u} + \vec{v}$ and $\vec{u} - \vec{v}$ are perpendicular.

$$\begin{split} (\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) &= \vec{u} \cdot \vec{u} - \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{u} - \vec{v} \cdot \vec{v} \\ &= ||\vec{u}||^2 - \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{v} - ||\vec{v}||^2 \\ &= ||\vec{u}||^2 - ||\vec{v}||^2 \\ &= 0, \qquad \text{since } ||\vec{u}|| = ||\vec{v}||. \end{split}$$

Therefore, the diagonals are perpendicular.

The Dot Product and Angles

Projections

Planes

Cross Produc

Shortest Distance

Given two nonzero vectors \vec{u} and \vec{d} , one can always express \vec{u} as a sum $\vec{u} = \vec{u}_1 + \vec{u}_2$, where \vec{u}_1 is parallel to \vec{d} and \vec{u}_2 is orthogonal to \vec{d} .

Given two nonzero vectors \vec{u} and \vec{d} , one can always express \vec{u} as a sum $\vec{u} = \vec{u}_1 + \vec{u}_2$, where \vec{u}_1 is parallel to \vec{d} and \vec{u}_2 is orthogonal to \vec{d} .

Given two nonzero vectors \vec{u} and \vec{d} , one can always express \vec{u} as a sum $\vec{u} = \vec{u}_1 + \vec{u}_2$, where \vec{u}_1 is parallel to \vec{d} and \vec{u}_2 is orthogonal to \vec{d} .

 \vec{u}_1 is the projection of \vec{u} onto \vec{d} , written $\vec{u}_1 = \operatorname{proj}_{\vec{d}} \vec{u}$.

Given two nonzero vectors \vec{u} and \vec{d} , one can always express \vec{u} as a sum $\vec{u} = \vec{u}_1 + \vec{u}_2$, where \vec{u}_1 is parallel to \vec{d} and \vec{u}_2 is orthogonal to \vec{d} .

 \vec{u}_1 is the projection of \vec{u} onto \vec{d} , written $\vec{u}_1 = \text{proj}_{\vec{d}}\vec{u}$.

How to find $\vec{\mathbf{u}}_1 = \operatorname{proj}_{\vec{\mathbf{d}}} \vec{\mathbf{u}}$?

$$\vec{u}_{2} \cdot \vec{u}_{1} = 0 \qquad (\vec{u}_{1} \perp \vec{u}_{2})$$

$$\vec{u}_{2} \cdot (t\vec{d}) = 0 \qquad (\vec{u}_{1} = t\vec{d})$$

$$t(\vec{u}_{2} \cdot \vec{d}) = 0$$

$$\vec{u}_{2} \cdot \vec{d} = 0 \qquad (t \neq 0 \text{ b.c. } \vec{u} \neq \vec{0})$$

$$(\vec{u} - \vec{u}_{1}) \cdot \vec{d} = 0 \qquad (\vec{u}_{1} + \vec{u}_{2} = \vec{u})$$

$$\vec{u} \cdot \vec{d} - \vec{u}_{1} \cdot \vec{d} = 0$$

$$\vec{u} \cdot \vec{d} - (t\vec{d}) \cdot \vec{d} = 0 \qquad (\vec{u}_{1} = t\vec{d})$$

$$\vec{u} \cdot \vec{d} - t(\vec{d} \cdot \vec{d}) = 0$$

$$\vec{u} \cdot \vec{d} - t(|\vec{d}||^{2} = 0)$$

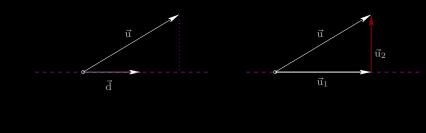
$$\vec{u} \cdot \vec{d} = t||\vec{d}||^{2}$$

$$t = \frac{\vec{u} \cdot \vec{d}}{||\vec{d}||^{2}} \qquad (\vec{d} \neq \vec{0})$$

$$\vec{u}_{1} = \frac{\vec{u} \cdot \vec{d}}{||\vec{d}||^{2}}$$

$$\vec{u}_{1} = \frac{\vec{u} \cdot \vec{d}}{||\vec{d}||^{2}}$$

$$(\vec{u}_{1} = t\vec{d})$$



Theorem

Let \vec{u} and \vec{d} be vectors with $\vec{d} \neq \vec{0}$.

1. The projection of \vec{u} onto \vec{d} is

$$\vec{u}_1 = \mathrm{proj}_{\vec{d}} \vec{u} = \frac{\vec{u} \cdot \vec{d}}{||\vec{d}||^2} \vec{d}.$$

Theorem

Let \vec{u} and \vec{d} be vectors with $\vec{d} \neq \vec{0}$.

1. The projection of \vec{u} onto \vec{d} is

$$\vec{u}_1 = \operatorname{proj}_{\vec{d}} \vec{u} = \frac{\vec{u} \cdot \vec{d}}{||\vec{d}||^2} \vec{d}.$$

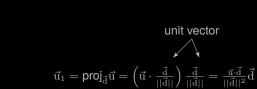
2.

$$\vec{u}_2 = \vec{u} - \frac{\vec{u} \cdot \vec{d}}{||\vec{d}||^2} \vec{d}$$

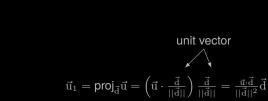
is orthogonal to \vec{d} .

 $\vec{u}_1 = \text{proj}_{\vec{d}} \vec{u} = \left(\vec{u} \cdot \frac{\vec{d}}{||\vec{d}||} \right) \frac{\vec{d}}{||\vec{d}||} = \frac{\vec{u} \cdot \vec{d}}{||\vec{d}||^2} \vec{d}$

$$\vec{u}_1 = \text{proj}_{\vec{d}} \vec{u} = \left(\vec{u} \cdot \frac{\vec{d}}{||\vec{d}||} \right) \frac{\vec{d}}{||\vec{d}||} = \frac{\vec{u} \cdot \vec{d}}{||\vec{d}||^2} \vec{d}$$



length



length

direction

Let
$$\vec{\mathbf{u}} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$
 and $\vec{\mathbf{v}} = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$. Find vectors $\vec{\mathbf{u}}_1$ and $\vec{\mathbf{u}}_2$ so that

 $\vec{\mathbf{u}} = \vec{\mathbf{u}}_1 + \vec{\mathbf{u}}_2$, with $\vec{\mathbf{u}}_1$ parallel to $\vec{\mathbf{v}}$ and $\vec{\mathbf{u}}_2$ orthogonal to $\vec{\mathbf{v}}$.

Let
$$\vec{\mathbf{u}} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$
 and $\vec{\mathbf{v}} = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$. Find vectors $\vec{\mathbf{u}}_1$ and $\vec{\mathbf{u}}_2$ so that $\vec{\mathbf{u}} = \vec{\mathbf{u}}_1 + \vec{\mathbf{u}}_2$, with $\vec{\mathbf{u}}_1$ parallel to $\vec{\mathbf{v}}$ and $\vec{\mathbf{u}}_2$ orthogonal to $\vec{\mathbf{v}}$.

$$\vec{\mathbf{u}}_1 = \operatorname{proj}_{\vec{\mathbf{v}}} \vec{\mathbf{u}} = \frac{\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}}{||\vec{\mathbf{v}}||^2} \vec{\mathbf{v}} = \frac{5}{11} \begin{bmatrix} 3\\1\\-1 \end{bmatrix} = \begin{bmatrix} 15/11\\5/11\\-5/11 \end{bmatrix}.$$

Let
$$\vec{\mathbf{u}} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$
 and $\vec{\mathbf{v}} = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$. Find vectors $\vec{\mathbf{u}}_1$ and $\vec{\mathbf{u}}_2$ so that $\vec{\mathbf{u}} = \vec{\mathbf{u}}_1 + \vec{\mathbf{u}}_2$, with $\vec{\mathbf{u}}_1$ parallel to $\vec{\mathbf{v}}$ and $\vec{\mathbf{u}}_2$ orthogonal to $\vec{\mathbf{v}}$.

$$\vec{u}_1 = \operatorname{proj}_{\vec{v}} \vec{u} = \frac{\vec{u} \cdot \vec{v}}{||\vec{v}||^2} \vec{v} = \frac{5}{11} \begin{bmatrix} 3\\1\\-1 \end{bmatrix} = \begin{bmatrix} 15/11\\5/11\\-5/11 \end{bmatrix}.$$

$$\vec{u}_2 = \vec{u} - \vec{u}_1 = \begin{bmatrix} 2\\-1\\0 \end{bmatrix} - \frac{5}{11} \begin{bmatrix} 3\\1\\1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 7\\-16\\5 \end{bmatrix} = \begin{bmatrix} 7/11\\-16/11\\5/11 \end{bmatrix}.$$

Let P(3,2,-1) be a point in \mathbb{R}^3 and L a line with equation

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} + t \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}.$$

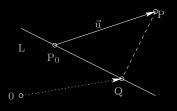
Find the shortest distance from P to L, and find the point Q on L that is closest to P.

Let P(3,2,-1) be a point in \mathbb{R}^3 and L a line with equation

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} + t \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}.$$

Find the shortest distance from P to L, and find the point Q on L that is closest to P.

Solution



Let $P_0 = P_0(2,1,3)$ be a point on L, and let $\vec{d} = \begin{bmatrix} 3 & -1 & -2 \end{bmatrix}^T$. Then $\overrightarrow{P_0Q} = \operatorname{proj}_{\vec{d}} \overrightarrow{P_0P}$, $\overrightarrow{OQ} = \overrightarrow{OP_0} + \overrightarrow{P_0Q}$, and the shortest distance from P to L is the length of \overrightarrow{QP} , where $\overrightarrow{QP} = \overrightarrow{P_0P} - \overrightarrow{P_0Q}$.

$$\overrightarrow{P_0P} = \begin{bmatrix} 1 & 1 & -4 \end{bmatrix}^T, \vec{d} = \begin{bmatrix} 3 & -1 & -2 \end{bmatrix}^T.$$

$$-4$$

$$-4$$

$$-4$$

 $\overrightarrow{P_0Q} = \operatorname{proj}_{\vec{d}} \overrightarrow{P_0P} = \overrightarrow{\overrightarrow{P_0P} \cdot \vec{d}}_{||\vec{d}||^2} \vec{d} = \frac{10}{14} \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 15 \\ -5 \\ -10 \end{bmatrix}.$

$$-4$$

$$\overrightarrow{DD}$$
 [1 1

$$\overrightarrow{P_0P} = \begin{bmatrix} 1 & 1 & -4 \end{bmatrix}$$

Therefore,

$$\overrightarrow{P_0P} = \left[\begin{array}{ccc} 1 & 1 & -4 \end{array}\right]^T, \, \overrightarrow{d} = \left[\begin{array}{ccc} 3 & -1 & -2 \end{array}\right]^T.$$

so $Q = Q(\frac{29}{7}, \frac{2}{7}, \frac{11}{7}).$

$$-4$$

$$\overrightarrow{P_0Q} = \operatorname{proj}_{\vec{d}} \overrightarrow{P_0P} = \frac{\overrightarrow{P_0P} \cdot \vec{d}}{||\vec{d}||^2} \vec{d} = \frac{10}{14} \left[\begin{array}{c} 3 \\ -1 \\ -2 \end{array} \right] = \frac{1}{7} \left[\begin{array}{c} 15 \\ -5 \\ -10 \end{array} \right].$$

 $\overrightarrow{0Q} = \overrightarrow{0P_0} + \overrightarrow{P_0Q} = \begin{bmatrix} 2\\1\\3 \end{bmatrix} + \frac{1}{7} \begin{bmatrix} 15\\-5\\-10 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 29\\2\\11 \end{bmatrix},$

Finally, the shortest distance from P(3, 2, -1) to L is the length of \overrightarrow{QP} ,

where
$$\overrightarrow{QP} = \overrightarrow{P_0P} - \overrightarrow{P_0Q} = \begin{bmatrix} 1\\1\\-4 \end{bmatrix} - \frac{1}{7} \begin{bmatrix} 15\\-5\\-10 \end{bmatrix} = \frac{2}{7} \begin{bmatrix} -4\\6\\-9 \end{bmatrix}.$$

Finally, the shortest distance from P(3,2,-1) to L is the length of \overrightarrow{QP} , where

where
$$\overrightarrow{\Rightarrow} \Rightarrow \overrightarrow{\Rightarrow} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 15 \\ 2 \end{bmatrix} \begin{bmatrix} -4 \\ -4 \end{bmatrix}$$

 $\overrightarrow{QP} = \overrightarrow{P_0P} - \overrightarrow{P_0Q} = \begin{bmatrix} 1\\1\\4 \end{bmatrix} - \frac{1}{7} \begin{bmatrix} 15\\-5\\-10 \end{bmatrix} = \frac{2}{7} \begin{bmatrix} -4\\6\\-0 \end{bmatrix}.$

Therefore the shortest distance from P to L is
$$||\overrightarrow{QP}|| = \frac{2}{7}\sqrt{(-4)^2+6^2+(-9)^2} = \frac{2}{7}\sqrt{133}.$$

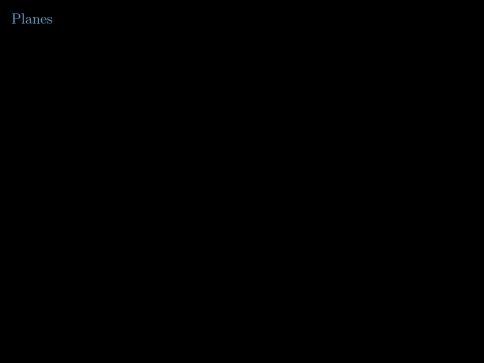
The Dot Product and Angles

Projections

Planes

Cross Produc

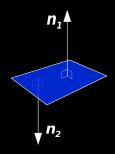
Shortest Distance



Planes

Definition

A nonzero vector \vec{n} is a normal vector to a plane if and only if $\vec{n} \cdot \vec{v} = 0$ for every vector \vec{v} in the plane.



Given a point P_0 and a nonzero vector \vec{n} , there is a unique plane containing P_0 and orthogonal to \vec{n} .

Consider a plane containing a point P_0 and orthogonal to vector \vec{n} , and let P be an arbitrary point on this plane.

Consider a plane containing a point P_0 and orthogonal to vector \vec{n} , and let P be an arbitrary point on this plane.

Then

$$\vec{n}\cdot\overrightarrow{P_0P}=0,$$

Consider a plane containing a point P_0 and orthogonal to vector \vec{n} , and let P be an arbitrary point on this plane.

Then

$$\vec{n}\cdot\overrightarrow{P_0P}=0,$$

 $\quad \text{or, equivalently,} \\$

$$\vec{n} \cdot (\overrightarrow{OP} - \overrightarrow{OP_0}) = 0,$$

and is a vector equation of the plane.

$$\vec{\mathbf{n}} \cdot (\overrightarrow{\mathbf{0P}} - \overrightarrow{\mathbf{0P_0}}) = 0 \quad \Longleftrightarrow \quad \vec{\mathbf{n}} \cdot \overrightarrow{\mathbf{0P}} = \vec{\mathbf{n}} \cdot \overrightarrow{\mathbf{0P_0}}$$

$$\vec{n}\cdot(\overrightarrow{0P}-\overrightarrow{0P_0})=0\quad\Longleftrightarrow\quad\vec{n}\cdot\overrightarrow{0P}=\vec{n}\cdot\overrightarrow{0P_0}$$

by setting $P_0 = P_0(x_0, y_0, z_0)$, P = P(x, y, z), $\vec{n} = \begin{bmatrix} a & b & c \end{bmatrix}^T$

$$\vec{\mathbf{n}} \cdot (\overrightarrow{\mathbf{0P}} - \overrightarrow{\mathbf{0P}_0}) = 0 \quad \Longleftrightarrow \quad \vec{\mathbf{n}} \cdot \overrightarrow{\mathbf{0P}} = \vec{\mathbf{n}} \cdot \overrightarrow{\mathbf{0P}_0}$$

by setting
$$P_0=P_0(x_0,y_0,z_0),\,P=P(x,y,z),\,\vec{n}=\left[\begin{array}{ccc}a&b&c\end{array}\right]^T$$

$$\vec{n} \cdot (\overrightarrow{0P} - \overrightarrow{0P_0}) = 0 \quad \Longleftrightarrow \quad \vec{n} \cdot \overrightarrow{0P} = \vec{n} \cdot \overrightarrow{0P_0}$$

by setting
$$P_0 = P_0(x_0, y_0, z_0)$$
, $P = P(x, y, z)$, $\vec{n} = \begin{bmatrix} a & b & c \end{bmatrix}^T$

setting
$$P_0 = P_0(x_0, y_0, z_0), P = P(x, y, z), \vec{n} =$$

setting
$$P_0 = P_0(x_0, y_0, z_0), P = P(x, y, z), \vec{n} = [$$

 \iff ax + by + cz = ax₀ + by₀ + cz₀,

$$\vec{\mathbf{n}} \cdot (\overrightarrow{\mathbf{0P}} - \overrightarrow{\mathbf{0P}_0}) = 0 \quad \Longleftrightarrow \quad \vec{\mathbf{n}} \cdot \overrightarrow{\mathbf{0P}} = \vec{\mathbf{n}} \cdot \overrightarrow{\mathbf{0P}_0}$$

by setting
$$P_0 = P_0(x_0, y_0, z_0), P = P(x, y, z), \vec{n} = \begin{bmatrix} a & b & c \end{bmatrix}^T$$

by setting
$$P_0 = P_0(x_0, y_0, z_0), P = P(x, y, z), \vec{n} = \begin{bmatrix} \\ a \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} x \\ \end{bmatrix}$$

by setting
$$P_0 = P_0(x_0, y_0, z_0)$$
, $P = P(x, y, z)$, $\vec{n} = \begin{bmatrix} a & x_0 \end{bmatrix}$

 \iff ax + by + cz = ax₀ + by₀ + cz₀,

setting $d = ax_0 + by_0 + cz_0 - a scalar$

$$\vec{\mathbf{n}} \cdot (\overrightarrow{\mathbf{0P}} - \overrightarrow{\mathbf{0P}_0}) = 0 \quad \Longleftrightarrow \quad \vec{\mathbf{n}} \cdot \overrightarrow{\mathbf{0P}} = \vec{\mathbf{n}} \cdot \overrightarrow{\mathbf{0P}_0}$$

by setting
$$P_0 = P_0(x_0, y_0, z_0)$$
, $P = P(x, y, z)$, $\vec{n} = \begin{bmatrix} a & b & c \end{bmatrix}^T$

$$\iff \begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ c \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \begin{bmatrix} x_0 \\ y_0 \\ c \end{bmatrix}$$

$$\iff \quad ax + by + cz = ax_0 + by_0 + cz_0,$$

setting $d = ax_0 + by_0 + cz_0 - a scalar$ $\iff \quad \boxed{ax+by+cz=d \ | , \ where \ a,b,c,d \in \mathbb{R}.}$

$$\vec{\mathbf{n}} \cdot (\overrightarrow{\mathbf{0P}} - \overrightarrow{\mathbf{0P}_0}) = 0 \quad \Longleftrightarrow \quad \vec{\mathbf{n}} \cdot \overrightarrow{\mathbf{0P}} = \vec{\mathbf{n}} \cdot \overrightarrow{\mathbf{0P}_0}$$

ting
$$P_0 = P_0(x_0, y_0, z_0), P = P(x, y, z), \vec{n} = [$$

by setting
$$P_0=P_0(x_0,y_0,z_0),\,P=P(x,y,z),\,\vec{n}=\left[\begin{array}{ccc}a&b&c\end{array}\right]^T$$

ting
$$P_0 = P_0(x_0, y_0, z_0), P = P(x, y, z), \vec{n} = \begin{bmatrix} a \\ b \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} \cdot \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$

 \iff $ax + by + cz = ax_0 + by_0 + cz_0$

setting $d = ax_0 + by_0 + cz_0 - a scalar$

 $\iff \quad \boxed{ax+by+cz=d \ | , \ where \ a,b,c,d \in \mathbb{R}.}$

This is the scalar equation of the plane.

Find an equation of the plane containing $P_0(1, -1, 0)$ and orthogonal to

$$\vec{n} = \begin{bmatrix} -3 & 5 & 2 \end{bmatrix}$$

Find an equation of the plane containing $P_0(1,-1,0)$ and orthogonal to $\vec{n}=\begin{bmatrix} -3 & 5 & 2 \end{bmatrix}^T$.

Solution

A vector equation of this plane is

$$\begin{bmatrix} -3 \\ 5 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} x-1 \\ y+1 \\ z \end{bmatrix} = 0.$$

Find an equation of the plane containing $P_0(1, -1, 0)$ and orthogonal to $\vec{n} = \begin{bmatrix} -3 & 5 & 2 \end{bmatrix}^T$.

Solution

A vector equation of this plane is

$$\begin{bmatrix} -3 \\ 5 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} x-1 \\ y+1 \\ z \end{bmatrix} = 0.$$

A scalar equation of this plane is

$$-3x + 5y + 2z = -3(1) + 5(-1) + 2(0) = -8,$$

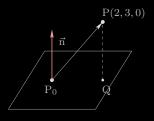
i.e., the plane has scalar equation

$$-3x + 5y + 2z = -8$$
.

Find the shortest distance from the point P(2,3,0) to the plane with equation 5x + y + z = -1, and find the point Q on the plane that is closest to P.

Find the shortest distance from the point P(2, 3, 0) to the plane with equation 5x + y + z = -1, and find the point Q on the plane that is closest to P.

Solution

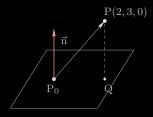


Pick an arbitrary point P_0 on the plane.

Then $\overrightarrow{QP} = \operatorname{proj}_{\overrightarrow{n}} \overrightarrow{P_0P}$, $||\overrightarrow{QP}||$ is the shortest distance, and $\overrightarrow{0Q} = \overrightarrow{0P} - \overrightarrow{QP}$.

Find the shortest distance from the point P(2,3,0) to the plane with equation 5x + y + z = -1, and find the point Q on the plane that is closest to P.

Solution



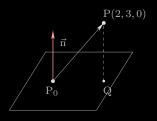
$$\vec{\mathbf{n}} = \begin{bmatrix} 5 & 1 & 1 \end{bmatrix}^{\mathrm{T}}$$

Pick an arbitrary point P_0 on the plane.

Then $\overrightarrow{QP} = \operatorname{proj}_{\overrightarrow{n}} \overrightarrow{P_0P}$, $||\overrightarrow{QP}||$ is the shortest distance, and $\overrightarrow{0Q} = \overrightarrow{0P} - \overrightarrow{QP}$.

Find the shortest distance from the point P(2,3,0) to the plane with equation 5x + y + z = -1, and find the point Q on the plane that is closest to P.

Solution



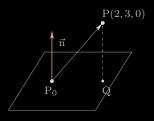
Pick an arbitrary point P_0 on the plane.

Then $\overrightarrow{QP} = \operatorname{proj}_{\overrightarrow{n}} \overrightarrow{P_0P}$, $||\overrightarrow{QP}||$ is the shortest distance, and $\overrightarrow{OQ} = \overrightarrow{OP} - \overrightarrow{QP}$.

$$\vec{n} = \left[\begin{array}{ccc} 5 & 1 & 1 \end{array} \right]^T. \text{ Choose } P_0 = P_0(0,0,-1).$$

Find the shortest distance from the point P(2,3,0) to the plane with equation 5x + y + z = -1, and find the point Q on the plane that is closest to P.

Solution

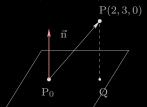


Pick an arbitrary point P_0 on the plane. Then $\overrightarrow{QP} = \operatorname{proj}_{\overrightarrow{\Pi}} \overrightarrow{P_0P}$, $||\overrightarrow{QP}||$ is the shortest distance.

and
$$\overrightarrow{0Q} = \overrightarrow{0P} - \overrightarrow{QP}$$
.

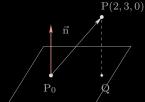
$$\vec{n} = \begin{bmatrix} 5 & 1 & 1 \end{bmatrix}^T$$
. Choose $P_0 = P_0(0, 0, -1)$. Then

$$\overrightarrow{P_0P} = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}^T$$



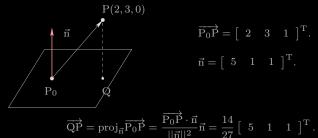
$$\overrightarrow{\overline{P_0P}} = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}^T.$$

$$I = \begin{bmatrix} 5 & 1 & 1 \end{bmatrix}^T$$



$$\overrightarrow{P_0P} = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}^T.$$

$$\overrightarrow{\overrightarrow{QP}} = \operatorname{proj}_{\vec{n}} \overrightarrow{\overrightarrow{P_0P}} = \overrightarrow{\overrightarrow{P_0P}} \cdot \overrightarrow{\vec{n}}_{} \vec{n} = \frac{14}{27} \begin{bmatrix} 5 & 1 & 1 \end{bmatrix}^{T}.$$



Since
$$||\overrightarrow{QP}|| = \frac{14}{27}\sqrt{27} = \frac{14\sqrt{3}}{9}$$
, the shortest distance from P to the plane is $\frac{14\sqrt{3}}{9}$.

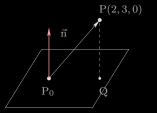
 $\overrightarrow{P_0P} = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}^T.$

$$\overrightarrow{\overline{QP}} = \operatorname{proj}_{\vec{n}} \overrightarrow{P_0 P} = \frac{\overrightarrow{\overline{P_0 P}} \cdot \vec{n}}{||\vec{n}||^2} \vec{n} = \frac{14}{27} \begin{bmatrix} 5 & 1 & 1 \end{bmatrix}^{T}.$$

Since $||\overrightarrow{QP}|| = \frac{14}{27}\sqrt{27} = \frac{14\sqrt{3}}{9}$, the shortest distance from P to the plane is $\frac{14\sqrt{3}}{9}$.

To find Q, we have

$$\overrightarrow{0Q} = \overrightarrow{0P} - \overrightarrow{QP} = \begin{bmatrix} 2 & 3 & 0 \end{bmatrix}^{T} - \frac{14}{27} \begin{bmatrix} 5 & 1 & 1 \end{bmatrix}$$
$$= \frac{1}{27} \begin{bmatrix} -16 & 67 & -14 \end{bmatrix}^{T}.$$



$$\overrightarrow{P_0P} = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}^T.$$

$$\vec{\mathbf{n}} = \begin{bmatrix} 5 & 1 & 1 \end{bmatrix}^{\mathrm{T}}.$$

$$\overrightarrow{QP} = \operatorname{proj}_{\vec{n}} \overrightarrow{P_0P} = \frac{\overrightarrow{P_0P} \cdot \vec{n}}{||\vec{n}||^2} \vec{n} = \frac{14}{27} \begin{bmatrix} 5 & 1 & 1 \end{bmatrix}^T.$$

Since
$$||\overrightarrow{QP}|| = \frac{14}{27}\sqrt{27} = \frac{14\sqrt{3}}{9}$$
, the shortest distance from P to the plane is $\frac{14\sqrt{3}}{9}$.

To find Q, we have

$$\overrightarrow{0Q} = \overrightarrow{0P} - \overrightarrow{QP} = \begin{bmatrix} 2 & 3 & 0 \end{bmatrix}^{T} - \frac{14}{27} \begin{bmatrix} 5 & 1 & 1 \end{bmatrix}^{T}$$
$$= \frac{1}{27} \begin{bmatrix} -16 & 67 & -14 \end{bmatrix}^{T}.$$

Therefore
$$Q = Q\left(-\frac{16}{27}, \frac{67}{27}, -\frac{14}{27}\right)$$
.

Here is a general answer: the distance from $P(x_0, y_0, z_0)$ to the plane

Here is a general answer: the distance from
$$P(x_0, y_0, z_0)$$
 to the plane $ax + by + cz = d$ is

distance = $\frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}$

The Dot Product and Angles

Projections

Planes

Cross Product

Shortest Distance

The Cross Product

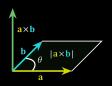
Definition

Let
$$\vec{u} = \begin{bmatrix} x_1 & y_1 & z_1 \end{bmatrix}^T$$
 and $\vec{v} = \begin{bmatrix} x_2 & y_2 & z_2 \end{bmatrix}^T$. Then
$$\vec{u} \times \vec{v} = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ -(x_1 z_2 - z_1 x_2) \\ x_1 y_2 - y_1 x_2 \end{bmatrix}.$$

The Cross Product

Definition

Let
$$\vec{u} = \begin{bmatrix} x_1 & y_1 & z_1 \end{bmatrix}^T$$
 and $\vec{v} = \begin{bmatrix} x_2 & y_2 & z_2 \end{bmatrix}^T$. Then
$$\vec{u} \times \vec{v} = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ -(x_1 z_2 - z_1 x_2) \\ x_1 y_2 - y_1 x_2 \end{bmatrix}.$$



Remark

 $\vec{u} \times \vec{v}$ is a vector:

- ightharpoonup Direction: orthogonal to both \vec{u} and \vec{v} .
- \blacktriangleright Size: the area of the corresponding parallelogram.

Remark

A mnemonic device

$$\vec{u} \times \vec{v} = \left| \begin{array}{ccc} \vec{i} & x_1 & x_2 \\ \vec{j} & y_1 & y_2 \\ \vec{k} & z_1 & z_2 \end{array} \right|, \text{ where } \vec{i} = \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right], \vec{j} = \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right], \vec{k} = \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right].$$

Or equivalently,

$$ec{\mathbf{u}} imes ec{\mathbf{v}} = \left| egin{array}{ccc} ec{\mathbf{i}} & ec{\mathbf{j}} & ec{\mathbf{k}} \ \mathbf{x}_1 & \mathbf{y}_1 & \mathbf{z}_1 \ \mathbf{x}_2 & \mathbf{y}_2 & \mathbf{z}_2 \end{array}
ight.$$

Theorem

Let $\vec{v}, \vec{w} \in \mathbb{R}^3$.

Theorem

Let $\vec{v}, \vec{w} \in \mathbb{R}^3$.

1. $\vec{v} \times \vec{w}$ is orthogonal to both \vec{v} and \vec{w} .

Theorem

Let $\vec{v}, \vec{w} \in \mathbb{R}^3$.

- - 1. $\vec{v} \times \vec{w}$ is orthogonal to both \vec{v} and \vec{w} .

2. If \vec{v} and \vec{w} are both nonzero, then $\vec{u} \times \vec{w} = \vec{0}$ if and only if \vec{v} and \vec{w} are parallel.

Find all vectors orthogonal to both $\vec{\mathbf{u}} = \begin{bmatrix} -1 & -3 & 2 \end{bmatrix}^{\mathrm{T}}$ and $\vec{\mathbf{v}} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^{\mathrm{T}}$. (We previously solved this using the dot product

Find all vectors orthogonal to both
$$\vec{u} = \begin{bmatrix} -1 & -3 & 2 \end{bmatrix}^T$$
 and $\vec{v} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$. (We previously solved this using the **dot product**.)

Solution

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & -1 & 0 \\ \vec{j} & -3 & 1 \\ \vec{k} & 2 & 1 \end{vmatrix} = -5\vec{i} + \vec{j} - \vec{k} = \begin{bmatrix} -5 \\ 1 \\ -1 \end{bmatrix}.$$

Any scalar multiple of $\vec{u} \times \vec{v}$ is also orthogonal to both \vec{u} and \vec{v} , so

gives all vectors orthogonal to both $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$.

(Compare this with our earlier answer.)

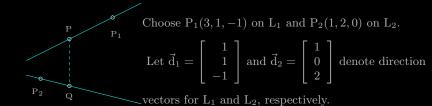
Given two lines

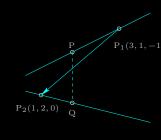
$$L_1: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \quad \text{and} \quad L_2: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix},$$

A. Find the shortest distance between L_1 and L_2 .

B. Find the points P on L_1 and Q on L_2 that are closest together.

Solution





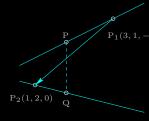
$$ec{\mathbf{d}}_1 = \left[egin{array}{c} 1 \\ 1 \\ -1 \end{array}
ight], ec{\mathbf{d}}_2 = \left[egin{array}{c} \end{array}
ight]$$

The shortest distance between L_1 and L_2 is the length of the projection of $\overrightarrow{\mathrm{P}_1\mathrm{P}_2}$ onto $\vec{\mathrm{n}}=\vec{\mathrm{d}}_1\times\vec{\mathrm{d}}_2.$

$$\vec{\mathbf{d}}_1 = \left[\begin{array}{c} 1 \\ 1 \\ -1 \end{array} \right], \vec{\mathbf{d}}_2 = \left[\begin{array}{c} \end{array} \right]$$

The shortest distance between L_1 and L_2 is the length of the projection of $\overrightarrow{\mathrm{P_1P_2}}$ onto $\vec{\mathrm{n}}=\vec{\mathrm{d}}_1\times\vec{\mathrm{d}}_2.$

$$\overrightarrow{P_1P_2} = \begin{bmatrix} -2\\1\\1 \end{bmatrix} \quad \text{and} \quad \vec{n} = \begin{bmatrix} 1\\1\\-1 \end{bmatrix} \times \begin{bmatrix} 1\\0\\2 \end{bmatrix} = \begin{bmatrix} 2\\-3\\-1 \end{bmatrix}$$



$$ec{\mathbf{d}}_1 = \left[egin{array}{c} 1 \\ 1 \\ -1 \end{array}
ight], ec{\mathbf{d}}_2 = \left[egin{array}{c} 1 \\ 1 \end{array}
ight]$$

The shortest distance between L_1 and L_2 is the length of the projection of $\overrightarrow{P_1P_2}$ onto $\vec{n} = \vec{d}_1 \times \vec{d}_2$.

$$\overrightarrow{P_1P_2} = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} \quad \text{and} \quad \vec{n} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$$

$$\text{proj}_{\vec{n}}\overrightarrow{P_1P_2} = \frac{\overrightarrow{P_1P_2} \cdot \vec{n}}{||\vec{n}||^2} \vec{n}, \quad \text{and} \quad ||\text{proj}_{\vec{n}}\overrightarrow{P_1P_2}|| = \frac{|\overrightarrow{P_1P_2} \cdot \vec{n}|}{||\vec{n}||}.$$

$$P_{1}(3,1,-1)$$
 $P_{2}(1,2,0)$
 Q

$$\vec{\mathbf{d}}_1 = \left[\begin{array}{c} 1 \\ 1 \\ -1 \end{array} \right], \vec{\mathbf{d}}_2 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right]$$

The shortest distance between L_1 and L_2 is the length of the projection of $\overrightarrow{P_1P_2}$ onto $\vec{\mathrm{n}}=\vec{\mathrm{d}}_1\times\vec{\mathrm{d}}_2.$

$$\overrightarrow{P_1P_2} = \begin{bmatrix} -2\\1\\1 \end{bmatrix} \quad \text{and} \quad \overrightarrow{n} = \begin{bmatrix} 1\\1\\-1 \end{bmatrix} \times \begin{bmatrix} 1\\0\\2 \end{bmatrix} = \begin{bmatrix} 2\\-3\\-1 \end{bmatrix}$$

$$\text{proj}_{\vec{n}}\overrightarrow{P_1P_2} = \frac{\overrightarrow{P_1P_2} \cdot \vec{n}}{||\vec{n}||^2}\vec{n}, \quad \text{and} \quad ||\text{proj}_{\vec{n}}\overrightarrow{P_1P_2}|| = \frac{|\overrightarrow{P_1P_2} \cdot \vec{n}|}{||\vec{n}||}.$$

Therefore, the shortest distance between L_1 and L_2 is $\frac{|-8|}{\sqrt{14}} = \frac{4}{7}\sqrt{14}$.

Solution B.

$$\vec{\mathbf{d}}_1 = \begin{bmatrix} \\ \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \vec{\mathbf{d}}_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \vec{\mathbf{d}}_2 = \begin{bmatrix} 1\\0\\2 \end{bmatrix}$$

$$\overrightarrow{DP} = \left[egin{array}{c} 3+\mathrm{s} \\ 1+\mathrm{s} \\ -1-\mathrm{s} \end{array}
ight]$$
 for some $\mathrm{s} \in \mathbb{N}$

$$\overrightarrow{0Q} = \left[\begin{array}{c} 1+t \\ 2 \end{array} \right]$$
 for some $t \in$

$$\overrightarrow{DQ} = \left[egin{array}{c} 2 \ 2t \end{array}
ight]$$
 for some $\mathbf{t} \in \mathbb{R}$

$$\widetilde{Q} = \left[\begin{array}{c} 2 \\ 2t \end{array} \right] \text{ for some } t \in \mathbb{R}.$$

$$\vec{\mathbf{d}}_1 = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \vec{\mathbf{d}}_2 = \begin{bmatrix} 1\\0\\2 \end{bmatrix}$$

$$\overrightarrow{0P} = \left[\begin{array}{c} 3+s \\ 1+s \\ -1-s \end{array} \right]$$
 for some $s \in$

for some
$$t\in\mathbb{R}$$
.

$$P_2(1,2,0)$$
 Q $\overrightarrow{0Q}=\left[egin{array}{c} 1+t \\ 2 \\ 2t \end{array}
ight]$ for some $t\in\mathbb{R}$.

Now
$$\overrightarrow{PQ} = \begin{bmatrix} -2-s+t & 1-s & 1+s+2t \end{bmatrix}^T$$
 is orthogonal to both L_1 and L_2 , so $\overrightarrow{PQ} \cdot \vec{d}_1 = 0$ and $\overrightarrow{PQ} \cdot \vec{d}_2 = 0$.

$$P = P_1(3, 1, -1)$$

$$\mathbf{d}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \mathbf{d}_2 = \begin{bmatrix} 3+\mathbf{s} \end{bmatrix}$$

$$\vec{\mathbf{d}}_1 = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \vec{\mathbf{d}}_2 = \begin{bmatrix} 1\\0\\2 \end{bmatrix}$$

$$\overrightarrow{0P} = \left[\begin{array}{c} 3+s \\ 1+s \\ -1-s \end{array} \right] \text{ for some } s \in$$

$$t \in \mathbb{R}$$
.

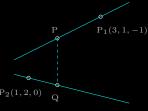
$$\mathrm{t}\in\mathbb{R}.$$

$$\overrightarrow{OQ} = \begin{bmatrix} 1+t \\ 2 \\ 2t \end{bmatrix} \text{ for some } t \in \mathbb{R}.$$
 Now $\overrightarrow{PQ} = \begin{bmatrix} -2-s+t & 1-s & 1+s+2t \end{bmatrix}^T$ is orthogonal to both L_1 and L_2 , so

$$\overrightarrow{\mathrm{PQ}}\cdot \vec{\mathrm{d}}_1=0$$
 and $\overrightarrow{\mathrm{PQ}}\cdot \vec{\mathrm{d}}_2=0,$

$$-2 - 3s - t = 0$$

 $s + 5t = 0$



 $\mathbf{d}_1 = \left[\begin{array}{c} 1 \\ 1 \\ -1 \end{array} \right], \vec{\mathbf{d}}_2 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right]$

$$\overrightarrow{0P} = \left[\begin{array}{c} 3+s \\ 1+s \\ -1-s \end{array} \right] \text{ for some } s \in$$

$$\overrightarrow{0Q} = \left[egin{array}{c} 1+t \ 2 \ 2t \end{array}
ight] ext{ for some } t \in \mathbb{R}$$

Now
$$\overrightarrow{PQ} = \begin{bmatrix} -2 - s + t & 1 - s & 1 + s + 2t \end{bmatrix}^T$$
 is orthogonal to both L_1 and L_2 , so

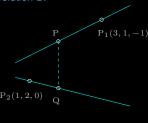
$$\overrightarrow{PQ} \cdot \vec{d}_1 = 0 \quad \text{and} \quad \overrightarrow{PQ} \cdot \vec{d}_2 = 0,$$

i.e.,

$$-2 - 3s - t = 0$$

 $s + 5t = 0$.

This system has unique solution $s=-\frac{5}{7}$ and $t=\frac{1}{7}.$



 $\mathbf{d} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \vec{\mathbf{d}}_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$

$$\overrightarrow{OP} = \left[\begin{array}{c} 1+s \\ -1-s \end{array} \right] \text{ for some } s \in$$

$$\overrightarrow{0Q} = \begin{bmatrix} 1 & + & t \\ 2 & \\ 2t & \end{bmatrix}$$
 for some $t \in \mathbb{R}$

Now $\overrightarrow{PQ} = \left[\begin{array}{ccc} -2-s+t & 1-s & 1+s+2t \end{array} \right]^T$ is orthogonal to both L_1 and L_2 , so

$$\overrightarrow{PQ} \cdot \vec{d}_1 = 0 \quad \text{and} \quad \overrightarrow{PQ} \cdot \vec{d}_2 = 0,$$

i.e.,

$$\begin{array}{rcl}
-2 - 3s - t & = & 0 \\
s + 5t & = & 0.
\end{array}$$

This system has unique solution $s=-\frac{5}{7}$ and $t=\frac{1}{7}$. Therefore,

$$\mathrm{P} = \mathrm{P}\left(\frac{16}{7}, \frac{2}{7}, -\frac{2}{7}\right) \quad \text{and} \quad \mathrm{Q} = \mathrm{Q}\left(\frac{8}{7}, 2, \frac{2}{7}\right).$$

The shortest distance between
$$L_1$$
 and L_2 is $||\overrightarrow{PQ}||.$ Since
$$P=P\left(\frac{16}{7},\frac{2}{7},-\frac{2}{7}\right)\quad\text{and}\quad Q=Q\left(\frac{8}{7},2,\frac{2}{7}\right),$$

The shortest distance between L_1 and L_2 is $||\overrightarrow{\mathrm{PQ}}||.$ Since

$$\mathrm{P}=\mathrm{P}\left(\frac{16}{7},\frac{2}{7},-\frac{2}{7}\right)\quad\text{and}\quad \mathrm{Q}=\mathrm{Q}\left(\frac{8}{7},2,\frac{2}{7}\right),$$

 $\overrightarrow{PQ} = \frac{1}{7} \begin{bmatrix} 8\\14\\2 \end{bmatrix} - \frac{1}{7} \begin{bmatrix} 16\\2\\-2 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} -8\\12\\4 \end{bmatrix},$

The shortest distance between L₁ and L₂ is $||\overrightarrow{PO}||$ Since

		اعد داا د.	1. 555
P = P	$9\left(\frac{16}{7}, \frac{2}{7}, -\frac{2}{7}\right)$	and C	$Q = Q\left(\frac{8}{7}, 2, \frac{2}{7}\right),$

$$\mathrm{P} = \mathrm{P}\left(rac{16}{7}, rac{2}{7}, -rac{2}{7}
ight)$$
 and $\mathrm{Q} = \mathrm{Q}\left(rac{8}{7}, rac{2}{7}
ight)$

and

 $\overrightarrow{PQ} = \frac{1}{7} \begin{bmatrix} 8\\14\\2 \end{bmatrix} - \frac{1}{7} \begin{bmatrix} 16\\2\\-2 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} -8\\12\\4 \end{bmatrix},$

 $||\overrightarrow{PQ}|| = \frac{1}{7}\sqrt{224} = \frac{4}{7}\sqrt{14}.$

P = P
$$\begin{pmatrix} 16 & 2 & 2 \end{pmatrix}$$
 and O = $0 \begin{pmatrix} 8 & 8 & 1 \end{pmatrix}$

 $\mathrm{P}=\mathrm{P}\left(rac{16}{7},rac{2}{7},-rac{2}{7}
ight)$ and $\mathrm{Q}=\mathrm{Q}\left(rac{8}{7},2,rac{2}{7}
ight),$

Therefore the shortest distance between L_1 and L_2 is $\frac{4}{7}\sqrt{14}$.

and

The shortest distance between L_1 and L_2 is $||\overrightarrow{PQ}||$. Since

 $\overrightarrow{PQ} = \frac{1}{7} \begin{vmatrix} 8 \\ 14 \\ 2 \end{vmatrix} - \frac{1}{7} \begin{vmatrix} 16 \\ 2 \\ -2 \end{vmatrix} = \frac{1}{7} \begin{vmatrix} -8 \\ 12 \\ 4 \end{vmatrix},$

 $||\overrightarrow{PQ}|| = \frac{1}{7}\sqrt{224} = \frac{4}{7}\sqrt{14}.$

The Dot Product and Angles

Projections

Planes

Cross Produc

Shortest Distances

Shortest Distances

Shortest Distances

Problem (Challenge Problem)

Write yourself a plan to find the shortest distance in \mathbb{R}^3 between either a point, line or plane, to either a point, line or plane.

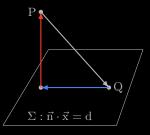
Point-point distance

If P and Q are two points, then $d(P,Q) = |\overrightarrow{PQ}|$.

Point-plane distance

If P is a point and $\Sigma: \vec{n} \cdot \vec{x} = d$ is a plane containing a point Q, then

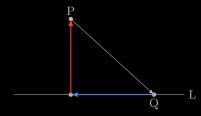
$$d\left(P,\Sigma\right) = \frac{\left|\overrightarrow{PQ} \cdot \vec{n}\right|}{\left|\vec{n}\right|}$$



Point-line distance

If P is a point and L is a line $\vec{r}(t) = Q + t\vec{u}$, then

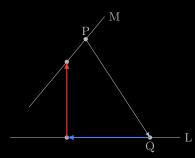
$$d\left(P,L\right)=\frac{\left|\overrightarrow{PQ}\times\vec{u}\right|}{\left|\vec{u}\right|}$$



Line-line distance

If L is a line $\vec{r}(t) = Q + t\vec{u}$ and M is another line $\vec{s} = P + t\vec{v}$, then

$$d\left(L,M\right) = \frac{\left|\overrightarrow{PQ} \cdot \left(\vec{u} \times \vec{v}\right)\right|}{\left|\vec{u} \times \vec{v}\right|}$$



Plane-plane distance

If
$$\Sigma:\vec{n}\cdot\vec{x}=d$$
 and $\Theta:\vec{n}\cdot\vec{x}=e$ are two parallel planes, then
$$d\left(\Sigma,\Theta\right)=\frac{|e-d|}{|\vec{n}|}$$

